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Abstract—The analytical method for the synthesis of a generator of a random process with a
given spectrum in the form of a linear system of Ito’s equations is proposed. The stationarity
of a random process is assumed, the spectral and corresponding transfer functions of which are
defined in the form of rational fractions. The coefficients of the system of Ito’s equations of
the generator are found from recurrent algebraic relations. The method is focused on working
with mathematical models of nature random processes, such as the Dryden’s wind model. The
transformation of the spectra of the wind gust model in three directions is presented in detail
and the corresponding stochastic equations are given.
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1. INTRODUCTION

The shaping filter allows you to generate a random signal with a given spectral density from
a white noise signal [1, Section 6.6; 2, Section 10.1; 3, Section 5.1.5]. The shaping filter and the
analyzed system form some extended system, the input of which is affected by white noise (Fig. 1).
This shows a way to move from representing a system in terms of transfer functions (shown in the
diagram) to stochastic differential equations. The results of the article will be useful to researchers
for adding random factors to a dynamic model and simulating natural phenomena (movement of
air masses, water flow, etc.).

There are many known models of wind gusts [4], but in the article only the Dryden [5] turbulence
model is considered in detail, which at the output gives a stochastic process determined by velocity
spectra. The spectral density of the signal is an even fractional-rational function of frequency and
can be represented in the form of two complex conjugate factors, from which the transfer function
of the shaping filter is found [1, Section 6.6; 3, Section 5.1.5].

Trying to directly write a high-order differential equation whose output has a given spectrum usu-
ally results in high-order white noise derivatives. The representation of these derivatives in the form
of generalized functions [6] and the generalization of the Itô equations in the form of Leontief-type
equations [6] are known, but such equations are complicated and little studied. In [3, Section 3.3.3]
the transition from a linear stochastic differential equation of higher order to a linear system of
stochastic differential equations of first order is considered, but to find the coefficients of the sys-
tem it is necessary to differentiate the coefficients of the original equation (if it is not stationary).
The proposed method allows us to describe a natural random process using the well-studied Ito
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Fig. 1. Connection diagram for the shaping filter.

equations [3]. The resulting equations, for example, can be used in conjunction with the equations
of the mathematical model of the aircraft [7].

A method is proposed for obtaining relatively simple stochastic differential equations for synthe-
sizing the output signal using a known transfer function. Next, we will consider transfer functions
under the assumption that the corresponding spectra are known.

Two ways of transforming any fractional-rational transfer function, leading to the same result,
are presented below. The function is decomposed into a sum of fractions, the numerators of which
are real numbers, and the denominators of which are polynomials. In this case, all operations are
arithmetic. And the process flow diagram can be depicted as a sum of integrating links. Based on
the new notation, it is possible to construct a system of linear stochastic differential Ito equations.

There is a slightly more complex way of similar transformation of the transfer function
[8, Section 2.3]. If the transfer function W (p) is given, then for the corresponding system of linear
equations of the form

ẋ = Ax+ bu
y = cx

(1)

it is necessary to find the matrix A and the vector b. The output vector c is given. The first
Frobenius form of the state equation matrix A is selected so that its characteristic polynomial
coincides with the denominator of the transfer function. The elements of the vector b are found
from solving the system of equations

W (p) = c(Ep −A)−1b

by the method of indefinite coefficients by equating factors with equal powers of the variable p of
polynomials of numerators on the left and right [8, Example 2.7].

In the proposed approach, the output vector c is in the process of being solved and is not known
in advance. As a result, matrix inversion is not required and only the coefficients of the Ito equation
are calculated using arithmetic operations.

The transformation to obtain the equation (1) is not unique [8]. Therefore, it is not always
possible to achieve “minimal implementation” (1), i.e., obtain the minimum possible number of
variables in the Ito equation.

2. MATHEMATICAL PROBLEM STATEMENT

Let the spectral density of the disturbance under study be defined as Φ(ω) = |W (iω)|2, here

W (p) =
Pm(p)

Qn(p)
=
a0p

m + a1p
m−1 + . . . + am−1p+ am

b0pn + b1pn−1 + . . . + bn−1p+ bn
, (2)

and ai (i = 0,m), bj (j = 0, n) are constant real coefficients. The poles and zeros of the func-
tion W (p) are located in the left half-plane. W (p) is the transfer function of the linear differential
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Wф(p)
u(t) x(t)

Fig. 2. Block diagram of a shaping filter.

equation

b0x
(n) + b1x

(n−1) + . . .+ bn−1x
′ + bnx

= a0u
(m) + a1u

(m−1) + . . .+ amu.
(3)

The block diagram of the shaping filter is shown in Fig. 2. If standard white noise (the derivative
of the standard Wiener process) u(t) is supplied to the input, then the equation (3) becomes
stochastic, but in the general case contains higher derivatives of white noise.

The goal is to replace the equation with a system of linear differential equations that satisfies
two conditions: a) the system does not contain derivatives of the input signal, b) its output, linearly
dependent on the state, coincides with the output of the equation. Such a system of equations, as
shown below, can easily be converted into the Ito system of equations.

It turns out that for the transformation it is enough to represent the transfer function (2) as a
sum of rational fractions, the numerators of which are real coefficients (zero-order polynomials). In
the case when all the zeros of the denominator of a rational fraction are real, such a transformation
is known [9], but requires finding the zeros of the denominator, which in the general case is only
possible numerically. The proposed transformation does not require finding zeros and for any
proper rational fraction with both real and complex zeros of the denominator, it can be performed
analytically. The coefficients of the modified transfer function are found sequentially from a chain
of linear equations.

A method for transforming a n order linear stochastic equation (3) to an equivalent first order
linear system of equations not containing white noise derivatives is shown in [3, Section 3.3.3]. In
this case, the equation is not stationary and the coefficients ai (i = 0,m), bj (j = 0, n) depend
on time t, and to find the coefficients of an equivalent system, it is necessary to differentiate the
functions ai, bj . For a stationary system, new coefficients are found from recurrent arithmetic
relations.

3. TRANSFER FUNCTION CONVERSION

The main idea is to represent the original function W (p) as the sum of several functions Wi(p),
i = 1,m+ n, see Fig. 3. The input and output signals will not change as a result of this conversion.

The proposed representation of the transfer function (2) has the form

W (p) =
Pm(p)

Qn(p)
=

α1

pn−m
+

α2

pn−m+1
+ . . . +

αm

pn−1

+
1

Qn(p)

(
βn−1

pn−1
+
βn−2

pn−2
+ . . .+

β1
p

+ β0

)
.

(4)
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Fig. 3. Block diagram of the sum of several shaping filters.

The number of coefficients αi (i = 1,m), βj (j = 0, n− 1) is m+ n. They can be obtained by
equating the left and right sides of the equations (2) and (4).

βn−1 + αmbn = 0,
βn−2 + αmbn−1 + αm−1bn = 0,
βn−3 + αmbn−2 + αm−1bn−1 + αm−2bn = 0,
. . .
βn−m+1 + αmbn−m+2 + . . . + α2bn = 0,
βn−m + αmbn−m+1 + . . . + α2bn−1 + α1bn = 0,
βn−m−1 + αmbn−m + . . . + α2bn−2 + α1bn−1 = 0,
. . .
β2 + αmb3 + αm−1b4 + . . . + α2bm+1 + α1bm+2 = 0,
β1 + αmb2 + αm−1b3 + . . . + α1bm+1 = 0,
β0 + αmb1 + αm−1b2 + . . . + α1bm = am,

αmb0 + αm−1b1 + . . . + α1bm−1 = am−1,
αm−1b0 + . . . + α1bm−2 = am−2,

. . .
α2b0 + α1b1 = a1,

α1b0 = a0.

Let us write a short form, which is a system of recurrent equations, with the help of which the
coefficients can be calculated sequentially:

α1 =
a0
b0
, αk =

1

b0

[
ak−1 −

k−1∑
s=1

αsbk−s

]
, k = 2,m,

β0 = am −
m∑
s=1

αsbm−s+1,

βk = −
m∑
s=1

αsbm+k−s+1, k = 1, n−m,

βk = −
n−k∑
s=1

α−n+m+k+sbn−s+1, k = n−m+ 1, n − 1.
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There is another way to converse the transfer function. Let the transfer function have the form

W (r)(p) =
a
(r)
0 pn−r + a

(r)
1 pn−r−1 + . . .+ a

(r)
n−r−1p+ a

(r)
n−r

b0pn + b1pn−1 + . . . + bn−1p+ bn
, (5)

1 � r � n. The superscript (r) indicates the function number and the degree of the numerator
polynomial. The degree of the numerator polynomial W (r+1)(p) is less than the degree of the
numerator polynomial W (r)(p), since n− (r + 1) < n− r. Let us denote B(p) = b0p

n + b1p
n−1+

. . . + bn−1p+ bn and perform a series of conversions of the function W (r)(p), consisting of succes-
sively reducing the degree of the numerator polynomial to zero.

W (r)(p) =
a
(r)
0 pn + a

(r)
1 pn−1 + . . . + a

(r)
n−rp

r

prB(p)

=
1

p rB(p)

[
a
(r)
0

b0
B(p)− a

(r)
0

b0

(
b1p

n−1 + . . . + bn−1p+ bn
)

+
(
a
(r)
1 pn−1 + a

(r)
2 pn−2 + . . .+ a

(r)
n−rp

r
)]

=
a
(r)
0

b0

1

pr
+

1

B(p)

[(
a
(r)
1 − a

(r)
0

b0
b1

)
pn−r−1 + . . .

+

(
a
(r)
n−r−1 −

a
(r)
0

b0
bn−r−1

)
p+

(
a
(r)
n−r −

a
(r)
0

b0
bn−r

)]

− a
(r)
0

b0

1

B(p)

[
bn−r+1

p
+
bn−r+2

p2
+ . . .+

bn
pr

]
.

Let’s determine the coefficients a
(r+1)
α = a

(r)
1+α − (a

(r)
0 /b0)b1+α, α = 0, n − r − 1, for the new func-

tion W (r+1). Then

W (r)(p) =
a
(r)
0

b0

1

pr
+W (r+1)(p)− a

(r)
0

b0

1

B(p)

r∑
k=1

bn−r+k

pk
, (6)

and W (r+1)(p) =W (r)(p)− a
(r)
0

b0

1

pr
+
a
(r)
0

b0

1

B(p)

r∑
k=1

bn−r+k

pk
.

The maximum number of steps is n− r. The function W (r)(p) is defined at the rth step, it is
necessary to find W (r+1)(p), W (r+2)(p), . . . . The numerator of the last function W (r+s)(p) is a
zeroth order polynomial, and then the calculation will be completed. Each next found function
W (r+k+1)(p) must be substituted into the current function W (r+k)(p).

4. CREATING A RANDOM DISTURBANCE GENERATOR

Let’s consider the transfer function (4), which is the sum of integrating links with their own gain

factors [10]. For link 1/pn−m the corresponding equation will be x1 = u/pn−m, or x
(n−m)
1 = u. The

link 1/pn−m+1 will give the equation x2 = u/pn−m+1 = u/(pn−mp) = u/pn−m × 1/p = x1 × 1/p, or
x′2 = x1. This is how differential equations for the first m outputs are successively found. In the
same way, using the denominator Qn(p), we obtain the output equation xm+1, which then needs to
be integrated another n − 1 times using the terms in brackets from (4). The last step will be the
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summation of all outputs with the corresponding coefficients α, β. Let us write down the system of
differential equations and the output equation corresponding to the transfer function (4) and (3):

x
(n−m)
1 = u, x′2 = x1, x′3 = x2, . . . x′m = xm−1,

b0x
(n)
m+1 + b1x

(n−1)
m+1 + . . .+ bn−1x

′
m+1 + bnxm+1 = u,

x′m+2 = xm+1, . . . x′m+n = xm+n−1,

x = α1x1 + α2x2 + . . .+ αmxm + β0xm+1 + β1xm+2 + . . . + βn−1xm+n.

(7)

The order of the resulting system is N � 3n− 2.

The system (3) can be easily written as a system of first-order equations (7) and, assuming that
u(t) is standard white noise, transformed into a system of Ito equations Nth order.

The transformation does not change the transfer function W (p) for the output x = α1x1+
α2x2 + . . . (see (7)). Nevertheless, the transfer functions of the outputs x1, x2, . . . have a cer-
tain number of zero poles. Thus, Wk(p) for xk, k = 1,m has the form Wk(p) = 1/pn−m+k−1. In
practice, this will lead to instability in process modeling (due to calculation errors). However, this
situation can be corrected by making the replacement p = (q −Δ)/λ (q = λp+Δ), Δ/λ > 0 in the
original transfer function W (p). Then

W ∗(q) =
P ∗
m(q)

Q∗
n(q)

=
Pm

(
q−Δ
λ

)
Qn

(
q−Δ
λ

) =
α∗
1

qn−m
+

α∗
2

qn−m+1
+ . . .

+
α∗
m

qn−1
+

1

Q∗
n(q)

(
β∗n−1

qn−1
+
β∗n−2

qn−2
+ . . .+

β∗1
q

+ β∗0

)
.

By inverse transformation q = λp+Δ we get

W (p) =
Pm(p)

Qn(p)
=

α∗
1

(λp+Δ)n−m
+

α∗
2

(λp +Δ)n−m+1
+ . . . .

The transfer functions of the output components x1, x2, . . . of such an expansion will have poles in
the left half-plane.

5. EXAMPLE

Let the transfer function be given

W (p) =
p2 + 2p+ 1

p3 + 3p2 + 2p+ 2
.

It is required to write it in the form of a sum of fractions with zero-order polynomials in the
numerators.

As a result of the transformation we get

W ∗(q) =W (q − 1) =
(q − 1)2 + 2(q − 1) + 1

(q − 1)3 + 3(q − 1)2 + 2(q − 1) + 2
=

q2

q3 − q + 2
.

Here n = 3, m = 2, a∗0 = 1, a∗1 = 0, a∗2 = 0, b∗0 = 1, b∗1 = 0, b∗2 = −1, b∗3 = 2, α∗
1 =

a∗0
b∗0

= 1,

α∗
2 = 1

b∗0
[a∗1 − α∗

1b
∗
1] = 0, β∗0 = a∗2 − [α∗

1b
∗
2 + α∗

2b
∗
1] = 1, β∗1 = −[α∗

1b
∗
3 + α∗

2b
∗
2] = −2, β∗2 = −[α∗

2b
∗
3] = 0.

W ∗(q) =
1

q
+

(
1− 2

q

)
1

q3 − q + 2
,

W (p) =
1

p+ 1
+

(
1− 2

p+ 1

)
1

p3 + 3p2 + 2p+ 2
.
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Let’s write the solution in the second way

W (1)(q) =
q2

q3 − q + 2
=

q2

B(q)
, B(q) = q3 − q + 2,

W (2)(q) =
q2

B(q)
− 1

q
+

1

B(q)
× 2

q
=
q3 −B(q) + 2

qB(q)
=

1

B(q)
.

We use (6)

W (1)(q) =
1

q
+

1

B(q)
− 1

B(q)

2

q
=

1

q
+

(
1− 2

q

)
1

B(q)
=W ∗(q).

The results are the same.

Let us write down the derivation of the Ito equations for W (p) in accordance with (7). The first
term gives the equation u = (p + 1)x1. The second equation will be u = (p3 + 3p2 + 2p+ 2)x2 =
((p + 1)3 − (p + 1) + 2)x2. Let us denote (p + 1)x2 = x4, (p + 1)x4 = x5, then u = (p+ 1)x5−
x4 + 2x2. The third equation would be u = (p + 1)(p3 + 3p2 + 2p+ 2)x3, or (p+ 1)x3 = x2.

The required system of Ito equations and the output equation have the form

dx1 + x1dt = dw, dx2 + (x2 − x4)dt = 0,

dx3 + (x3 − x2)dt = 0, dx4 + (x4 − x5)dt = 0,

dx5 + (x5 − x4 + 2x2)dt = dw,

x = x1 + x2 − 2x3.

Based on the transfer function, a linear system of Ito differential equations was obtained that does
not contain derivatives of the input signal. Of course, the choice of a new variable was made so
that it would be easy to isolate the cube of the sum in the denominator of the transfer function,
and then obtain first-order linear equations.

6. DRYDEN WIND TURBULENCE MODEL

The US Department of Defense uses the Dryden gust model in some aircraft design and simu-
lation applications. This mathematical model considers the speed components of continuous gusts
of wind as random processes [5, 11]. The MATLAB documentation provides an implementation of
the transfer function for wind gusts [12]. Twelve transfer functions are defined for gust models in
the longitudinal, horizontal and vertical directions. However, only three types of different functions
can be distinguished, differing from the model functions only by constant coefficients A, B, C, D
(see [12]):

G1(p) = A
1

1 + Cp
, G2(p) = A

1 +Bp

(1 +Cp)2
, G3(p) =

Ap

1 + Cp
× 1 +Bp

(1 +Dp)2
.

The first type of function G1(p) is a simple integrator and does not require any transformation.
The required system of Ito equations for G1(p) has the form

dx+
1

C
xdt =

A

C
dw.

Let’s look at the second one. It is required to obtain a system of Ito equations for the transfer
function G2(p). Then

G∗
2(q) = G2

(
q − 1

C

)
=
A

C

Bq + C −B

q2
=
A

C

(
B

q
+
C −B

q2

)
.

G2(p) =
A

C

(
B

1 + Cp
+

C −B

(1 + Cp)2

)
.
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The desired system of Ito equations and the output equation for G2(p) have the form

dx1 +
1

C
x1dt =

1

C
dw, dx2 +

1

C
(x2 − x1)dt = 0,

x =
A

C

(
Bx1 + (C −B)x2

)
.

If we make another change of variables q = p+ 1, we will get a rather cumbersome system of
5th order equations. We invite readers to see this for themselves.

Let’s consider the third function G3(p) and replace the variable: p = (q − 1)/D. Then

G∗
3(q) = G3

(
q − 1

D

)
= A

Bq2 + (D − 2B)q +B −D

DCq3 + (D2 −DC)q2
.

Let’s represent the last expression using (4):

G∗
3(q) = A

[
α1

q
+
α2

q2
+

1

b0q3 + b1q2

(
β2
q2

+
β1
q

+ β0

)]
,

then b0 = DC, b1 = D2 −DC, α1 = B/(DC), α2 =
[
D − 2B −B(D2 −DC)/(DC)

]
/(DC), β0 =

B −D − (D2 −DC)
[
D − 2B −B(D2 −DC)/(DC)

]
/(DC), β1 = 0, β2 = 0.

Let’s do the reverse change of variables and get the function

G3(p) = A

[
α1

1 +Dp
+

α2

(1 +Dp)2
+

β0
b0(1 +Dp)3 + b1(1 +Dp)2

]
.

Let us write down the derivation of the Ito equations for G3(p) in more detail. The first and
second terms give x1 =

u
1+Dp , x2 =

u
(1+Dp)2 = u

1+Dp × 1
1+Dp = x1

1+Dp . Let’s consider the third term:

x3 =
u

b0(1+Dp)3+b1(1+Dp)2 = u
(1+Dp)2 × 1

b0(1+Dp)+b1
= x2

b0(1+Dp)+b1
. Then the desired system of Ito

equations and the output equation for G3(p) have the form

dx1 +
1

D
x1dt =

1

D
dw, dx2 +

1

D
(x2 − x1)dt = 0,

dx3 − 1

Db0
x2dt+

b0 + b1
Db0

x3dt = 0,

x = A
[
α1x1 + α2x2 + β0x3

]
.

Dryden’s wind turbulence model is not the only one. For example, the von Karman model [13]
has other transfer functions such as

G(p) = A
1 +Bp

1 + Cp+Dp2
.

The corresponding system of Ito equations for this function will contain 6 variables. We do not
present the transformed function here because it turned out to be too cumbersome. Perhaps a not
very successful variable replacement was chosen. Therefore, the researchers themselves, depending
on the coefficients C and D of the denominator polynomial, must choose a manner for replacing
the variable.

The discussion about the choice of turbulence model continues [14]. It can be seen that the
number of variables in the Ito equation for the Dryden model is no more than three, and in the
von Karman model no less than six. Accordingly, the computational complexity of the wind gust
modeling algorithm increases.
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7. CONCLUSION

The proposed method for conversing the transfer function allows us to bring it to such a form
that the system of differential equations equivalent to the differential equation (3) does not contain
derivatives of the input signal u(t). Assuming that u(t) is white noise, the system can easily be
transformed into a system of Ito equations.

The results can be used not only for stochastic differential equations, but also for ordinary
differential equations with constant coefficients of the form (3) with scalar input and output sig-
nals [3, Section 1.3.4].

In the presented method it is impossible to influence the number of variables, but in the
method [8] it is possible to influence the number of output variables for the output signal y = cx
(see (1)) and, accordingly, the type shaping filter shown in Fig. 3. Therefore, in the approach
discussed above, the structure of the output signal becomes known only as a result of solving the
problem. And in the method described in [8], the type of the output signal is known in advance.
But the proposed solution, unlike [8], does not require matrix inversion, but uses only recursive
arithmetic operations to find the coefficients of polynomials.

The results of calculations and numerical modeling of dynamic processes for the systems con-
sidered in the article are not specifically presented here. In the opinion of the authors, a fairly
complete study with various modeling results was carried out in [14].
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